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Abstract. We carry out model studies of turbulence quantities for flow over two-dimensional hills 
using a non-hydrostatic version of the Regional Atmospheric Modeling System (RAMS). We test 
two turbulence closure models: the first one is an explicit Algebraic Reynolds Stress Model (ARSM) 
and the second one is a combination of the ARSM and a transport equation for the shear stress iE. 
Model predictions for the turbulent stresses are compared with data from a wind-tunnel experiment 
containing isolated two-dimensional hills of varying slope. From the comparison, it is concluded 
that the first model can only predict the normal stresses adequately while the second model provides 
satisfactory predictions for the normal stresses as well as giving an improved result for the shear - 
stress ~1. 

1. Introduction 

The study of the transport and dispersion of pollutants in the atmosphere is usually 
carried out using turbulent dispersion models, which require the turbulent normal -- 
stresses u*, V* and II’ 2, where U, t’, and w are turbulent velocity components along 
.v, y and 2 directions. The estimate of these quantities, therefore, will significantly 
affect the performance of the dispersion models. In the past, turbulent normal 
stresses were often given by oversimplified models. For example, in some cases, 
turbulence was assumed to be isotropic with the turbulent normal stresses given 
by7= $=21’2= $E, h w ere E is the turbulent kinetic energy. More frequently, 
turbulent normal stresses were given by empirical expressions containing a number 
of parameters that had to be adjusted a posteriori from case to case (cf. Hanna, 
1968; Panofsky et al., 1977). The main drawback of this type of model is the lack 
of predictive power. 

As far as turbulence modelling is concerned, lower-order turbulence models, 
including zero-equation models, which do not solve transport equations for turbu- 
lent quantities, one-equation models, in which one solves the transport equation for 
the turbulent kinetic energy E, and two-equation models, in which one solves the 
transport equations for E and another quantity related to the turbulence length scale 
(most frequently, the energy dissipation rate F), are all based on the Boussinesq 
eddy-viscosity assumption. The eddy-viscosity concept assumes that the Reynolds 
stresses U; ll,, are proportional to the mean velocity gradients as - 11 z .j = -14 c z + $$ . 1 + $,, E. (1) 
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where vi is the eddy-viscosity. 
When applying Equation (1) to a two-dimensional boundary-layer flow uni- 

form in the flow direction, all three normal stresses would be given by $E. This 
result contradicts many wind-tunnel measurements (e.g., Hunt and Fernholz, 1975). 
Specifically, in the EPA wind-tunnel experiment RUSHIL (Khurshudyan et al., 
198 I), the turbulent normal stresses measured near the surface over flat terrain are - 
given by 2 = l.O5E, 2 = 0.59E and w* = 0.36E (the flow is in the P direction). 
Clearly, turbulence models based on the eddy-viscosity assumption can not even 
predict the observed difference between the normal stresses in this very simple 
case, much less be successful in applications to highly inhomogeneous flows, such 
as those involved in complex terrain. Therefore, when one needs to make reason- 
able predictions of the normal stresses, the development of higher-order turbulence 
models becomes inevitable. 

The full second-order closure model employs transport equations for all the com- 
ponents of the Reynolds stress tensor (in general flows, there are six independent 
components). The task of solving a large number of partial differential equations 
is by no means trivial and this renders the model rather uneconomical. As a com- 
promise between accuracy and efficiency, several authors (Rodi, 1972; Launder et 
al., 1975; Pope, 1975; Taulbee, 1992; Gatski and Speziale, 1993) have developed 
algebraic Reynolds stress models (ARSMs), which do not entail a priori adoption 
of the eddy-viscosity concept. Rather, these models are derived directly from the 
transport equations for the Reynolds stresses. In brief, these derivations consist of 
approximating those terms in the transport equations that contain derivatives of 
the Reynolds stresses in some fashion so that these equations become algebraic. 
Among them, of particular interest here is the work of Pope, who has presented an 
explicit algebraic relation for the Reynolds stresses in two-dimensional turbulent 
flows. 

Although Pope’s work went to some extent unnoticed, it contains nice features 
that drew our attention. Specifically, the formulation seems promising in providing 
an efficient and adequate tool in the study of the Reynolds stresses in complex 
terrain. The main purpose of this paper is to explore Pope’s work by examining 
its performance in a wind-tunnel experiment. The specific wind-tunnel experiment 
we choose is the EPA experiment RUSHIL which provides complete mean and 
turbulent field data for a neutrally stratified flow over isolated, two-dimensional 
hills of variable shape. 

In the last two decades, the study of flow over hills has received considerable 
attention, because of its importance in pollutant dispersion predictions and wind 
energy applications. In a most influential theoretical study of turbulent flow over 
hills (Jackson and Hunt, 1975) the flow is divided into two layers, an inner layer 
where the stress perturbation can affect the mean flow and an outer layer where the 
flow is essentially inviscid. This theory has formed the basis for a series of models 
developed later (Mason and Sykes, 1979; Britter et al., 198 1; Walmsley et al., 1982, 
1986; Taylor et al., 1983; Hunt et al., 1988). The key to this approach is a careful 



TURBULENCE MODELLING OVER TWO-DIMENSIONAL HILLS 71 

scale analysis of the magnitudes of the various terms in the turbulence equation. It 
is known that at the bottom of the inner layer, the turbulence is approximately in 
local equilibrium, where the advection and transport are small, and the production 
is balanced by dissipation. In the outer layer, because the mean strain rates change 
rapidly compared to the eddy turnover time, the advection of turbulent energy 
from upstream becomes important and there is no balance between production and 
dissipation. In Jackson and Hunt’s work, the equation of motion is linearized so 
that it can only apply to flow over low hills. The analyses in this work, however, 
have had a profound influence on the way to view flow over hills of steepness 
greater than the linearized approach strictly accommodates. 

On the other hand, the numerical simulation method can solve the non-linear 
equations of motion with the addition of different turbulence closure schemes, 
and is not restricted to flow over low hills. Among the many who carried out 
numerical simulations of flow over complex terrain, Beljaars et al. (1987) and 
Zeman and Jensen (1987) compared their computational results using different 
turbulence closure models to the Askervein field experimental data (Taylor and 
Teunissen, 1985). They concluded that only sophisticated closure models, such 
as the E - t - r or the second-order closure, can correctly predict the stress 
changes over a hill. Ayotte et al. (1994) and Xu et al. (1994) compared the impacts 
of a variety of turbulence closure schemes on flow over complex terrain. Since 
their computations were based on terrains used neither for wind-tunnel nor field 
experiments, their results were not directly compared with measured data. 

Through literature review, we found that in the past, little attention has been paid 
to the study of the behavior of normal stresses for flow over complex terrain. Also, 
the many normal stress data measured in wind-tunnel experiments were rarely used 
for comparison with simulation results. Our study will concentrate on these two 
aspects. 

In this study, we solve a full set of primitive non-hydrostatic dynamic equations 
for mean flow quantities using a finite-difference method. The numerical code 
RAMS (the Regional Atmospheric Modeling System of Colorado State University) 
will be employed to perform the numerical calculation. The original RAMS code 
will be supplemented by our new turbulence models. In the first model, Pope’s 
formulation will be used to calculate all the components in the Reynolds stress 
tensor. In the second model, Pope’s formulation will only be used to calculate 
the normal stresses and a transport equation will be used to solve for the shear 
stress 1~ II’. In addition, these two models need to be solved in conjunction with the 
transport equations for the turbulent kinetic energy E and the energy dissipation 
rate t. To account for complex terrain, we use the terrain-following coordinate 
system available in RAMS (Clark, 1977), in which an irregular lower boundary is 
transformed into a plane. We shall make a detailed comparison of the simulation 
results using the above-mentioned two turbulence models and the wind-tunnel data, 
and assess Pope’s model. 
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2. Theoretical Formulations 

2.1. NON-HYDROSTATIC FLOWMODELOVER COMPLEX TERRAIN 

The mean flow velocity is governed by the following equation of motion 

d57; G 
dt t cp@Og = 6i3g 00 - 1 

( 1’ 
- &w. 

while the pressure is determined by a non-hydrostatic equation 

(2) 

(3) 

In these equations, E and G are the ensemble averages of the ith velocity 
component and the potential temperature: po, 00 and II0 are the density, potential 
temperature and dimensionless pressure of the initial unperturbed state of the 
atmosphere which is taken to be isentropic and at rest; r’ is the deviation of 
pressure from II,; Is; are the Reynolds stresses; R is the gas constant for dry air; 
cp and c,, are the specific heats at constant pressure and volume respectively and 
g is the acceleration due to gravity. For detailed derivation and numerical solution 
procedures of the above equations, the reader is referred to our previous paper 
(Ying et al., 1994). 

In the presence of complex terrain with surface height zy ( .x, y) and boundary 
layer height Y, all equations are transformed from Cartesian coordinates ( :r, y, 2) 
to a terrain following coordinate system (.r. y, ‘1) where 

(4) 

2.2. POPE'S EXPLICIT ALGEBRAIC REYNOLDS STRESS MODEL (ARSM) 

Pope’s ARSM is derived from the transport equation for the Reynolds stresses 11; 
modelled by Launder et al. (1973, which can be written as 

(5) 
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where D,( u;uj ) is the diffusion term, P = Ti;ir;$$ is the production term in 
the transport equation for E, and the values of the constants are suggested to be 
c’i = 1.5 and c72 = 0.4. 

In order to convert the differential equation (5) to an algebraic relation, Pope 
,adopted an approximation proposed by Rodi (1972). Rodi assumed that the trans- 
port of m, including the rate of change, advection and diffusion terms, is propor- 
tional to the transport of the kinetic energy E with the proportionality factor being 
the ratio u;/E (which is not a constant). One writes 

illl, ll., u; a 
~- 

dt 
Dj( 11;u3) = - 

E ( 

Df(E) 

dlt I 

On the basic of the transport equation of E 

ClE 
--DL)f(E)= P-c, 
dt 

Equation(6) then becomes 

dU;ll j 
A - Df(‘L;) = 

rlf 

2$p _ c). 

(6) 

(7) 

(8) 

Substituting Equation (8) into Equation (5) gives 

Equation (9) is a set of simultaneous algebraic equations for 11;. Pope, using 
a symbolic matrix inversion, succeeded in presenting an explicit expression for 
- . IL; uj m terms of the mean-rate of strain tensor S and the mean-vorticity tensor W 
defined by 
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(lob) 

In addition, Pope introduced the following abbreviated notations 

SW = &Wk,, WS = I/t’ikskj, {S2} = s&ski, {W2} = I/tT&I/tjci, (1123) 

I = 1, i=j, 
3 C 0, i # j, 

I*= 1, i=j#3, 
C 0, i#j or i=j=3. 

Pope’s explicit ARSM may be expressed as 

a = -2G[S + gb3(SW - WS) t gb2{S2} (513 - I2)] : (12) 

with 

Uij 
uiUl lb 

= - - 2ii-. 
3”’ 

and G = 2 19 

E 
’ (13) 

1 - 2b:g2{ W2) - $b;g2{S2} 

where 

1 5-9cr, 
g= 

C’, $ ; - 1. 
h=+ h= 11 , 3 11 . 

b =7c’2t1 
(14) 

In Pope’s formulation, as well as in some other presentations of explicit ARSMs 
(Taulbee, 1992; Gatski and Speziale, 1993), the ratio of the energy production 
and dissipation rates P/c remained implicit in order to retain the linearity of the 
equations for the Reynolds stresses. However, in the approximations proposed by 
Rodi (1972) and subsequently adopted by the above authors to derive the ARSM, 
the constancy of P/c is not assumed. Moreover, since P/c = -U;js’ij, P/t should 
not be treated as independent of n;j. In order to include the dependence of P/c on 
CLij, we have re-formulated Pope’s equation for CL;~ as follows: If we take the scalar 
product of both sides of Equation (12) with the strain-rate tensor S, the left hand 
side of Equation (12) leads to 

{as} = U;jSij = -f, 

and the right hand side of Equation (12) leads to 

{-2G[S t gb3(SW - WS) + gb2{S2}( $3 - 1211s) 

= -2GS;jSij = -2G{ S2}. (16) 
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Thus. 

i.e., the rate P/c is expressed in terms of the strain tensor S and the function 6’. 
On the other hand, C: is defined by Equation (13), which amounts to an additional 
independent relation between C: and the ratio P/t. From Equations (17) and (13), 
it is possible to eliminate P/c and express G solely in terms of the gradients of 
the mean velocity field. As it turns out, G is the solution of the following cubic 
equation: 

G’ + ‘;isr,‘G2 $ ((‘1 - 1 I2 - 2@{W2} - (b, + $&{S2}(: 
4{S2}2 

- h(Cl - 1) =0 

8{S2}2 . 
(18) 

In this way, we have succeeded in formulating a completely explicit ARSM, where 
the ratio P/c is no longer implicit. The detailed procedure of solving the cubic 
equation (18) is given in the Appendix. 

The singularities observed by Gatski and Speziale (1993) in the ARSMs, where 
the ratio P/t was implicit, no longer exist. Consequently, the regularization sug- 
gested by Gatski and Speziale is no longer needed. According to Gatski and 
Speziale, when the strain rates {S2} are large, the denominator in the expression 
(13) for L’ may become zero or even negative in which case the ARSM is ill- 
behaved. In contrast, in our model P/c is expressed explicitly in terms of the strain 
rates as P/c = 2C:{S*} and the coefficient 9 becomes inversely proportional to 
{S*} according to Equation (14). Then, in Equation (13), the factor y* in the {S*} 
term effectively prevents this term from becoming too large, therefore eliminating 
the singularities. 

2.3. TRANSPORTEQUATIONS FOR E AND c 

In Pope’s formulation, the turbulent kinetic energy E and the dissipation rate c are 
assumed to be given. In practice, Pope’s model must be solved in conjunction with 
the transport equations for E and E. The transport equations for E and 6 solved in 
this study are the same as those in the standard E - E model: 

(19) 

(20) 
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where crt, (TV, eit and czt are model constants. In these equations, the diffusion 
terms of E and c are modeled with a down-gradient assumption, where the eddy 
viscosity ut is given by 

The lower boundary conditions for E and t are applied at some height zp within 
the surface layer 

3 
G,) = 2. 

1 
(23) 

The friction velocity U, is obtained from the logarithmic profile of the mean velocity 
TI at zp, 

(24) 

where ~0 is the roughness length and K is the von Karman constant. 
The numerical method of obtaining the solutions of the E and E equations can 

be found in Ying et al. (1994). 

2.4. THE TRANSPORT EQUATION FOR mz 

In the first part of this study, we use Pope’s formulation to calculate all the com- 
ponents in the Reynolds stress tensor, while in the second part, we use Pope’s 
formulation only to calculate the normal stresses and leave the shear stress ?i~ to 
be determined by a transport equation. The transport equation for UUI is 

(25) 

where the constants a2 = 0.0256 and c$ = 1.5. Equation (25) is similar to the one 
derived by Hanjalic and Launder (1972). 

The lower boundary condition for .1Lu) is applied at 2 = 0 

Em(z = 0) = 4;. (26) 

The numerical method of obtaining the solution for Equation (25) is given in 
Ying et al. (1994). 
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3. The EPA Wind Tunnel Experiment RUSHIL 

The EPA wind-tunnel experiment RUSHIL (Khurshudyan et al., 1981) simulates 
a neutral atmospheric boundary layer with two-dimensional relief. The incoming 
flow (in the L direction) is characterized by a logarithmic velocity profile 

(27) 

with ~0 = 0.157 x 10e3 m, 1~~ = 0.178 m s-l, and K, = 0.4. This velocity 
profile reaches the free-stream velocity IT,,, = 3.9 m s-l at the height of 1 m. A 
two-dimensional model hill of analytical shape is placed across the incoming flow, 
spanning the width of the tunnel (in the y direction). The shape of the hill is given 
by the following parametric equations: 

(28) 

1 a2 f x - 111 I- 2 9[ u2 -12 
(2 $ 1112(d - (2) 

1 
. 

(29) 

where 

h 
Ill = - $ 

Cl Jc 1 

; t1. (30) 

h, is the height of the hill, u is the half width of the hill and [ is an arbitrary 
parameter. Three different model hills with h = 0.117 m and different slope were 
used. Their aspect ratio u/h was 8, 5 and 3, corresponding to maximum slope 
angles of lo”, 16” and 26”, respectively. These aspect ratios will be used as hill 
identifiers: Hill 8, Hill 5 and Hill 3. 

Measurements of mean and turbulent velocity fields were taken upwind, over 
and downwind of each of the hills. Vertical profiles of the mean horizontal velocity 
v( :), the angle of mean velocity to horizontal surface G(Z), the longitudinal and 
vertical turbulent intensities D,, ( z ) and CJ,(,( z), and the Reynolds shear stress mI(‘( z ) 
were measured at 16 longitudinal locations from .?:/a = -2 to X/CL > 5, where 
s = 0 corresponds to the top of the hill. For reference purpose, all the measurements 
were also taken over the flat wind tunnel floor. 

4. Simulations of the Mean and Turbulent Velocity Fields over Flat Terrain 

In order to adjust the model parameters appearing in the turbulence models, we 
begin the simulation for the case of flat terrain. The standard values of these 
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parameters used in most applications were based on extensive examination of 
engineering flows (Launder and Spalding, 1974). When these models are applied 
to the atmospheric boundary layer, the values of these constants often need to be re- 
adjusted (Detering and Etling, 1985; Duynkerke, 1988). Using the data measured 
over a flat floor in the experiment RUSHIL, we are able to do the re-adjustment 
suited to a wind-tunnel experiment which simulates the atmospheric boundary 
layer. 

First, the constant cfl, which, from the boundary condition for Equation (22), 
relates the value of E in the surface layer to the friction velocity ZL,, should 
be determined from the measurement. In the RUSHIL experiment, near the sur- 
face, the measured values of the turbulence intensities, uu N 2.521,, ou N l&u,, 
QUJ N 1.4~,, are in good agreement with other investigations of simulated and 
atmospheric boundary layers (Hunt and Fernholz, 1975; Counhan, 1975). There- 
fore, we use cV = 0.0256 taken from atmospheric surface-layer observations 
(Panofsky et al., 1977). 

Next, since it is well known in the standard E--E model, the constants in the t 
equation satisfy the following relation 

(31) 

the adjustment of the value of cV inevitably affects the other constants. Using the 
standard E-c model, we calculated the mean velocity c and the shear stress I( 
in the RUSHIL experiment over flat terrain. Our experimentation with varying 
constants leads to the same conclusion as the one reached by Detering and Etling 
(1985) in an earlier study: as long as relation (31) holds, the results for F and 
II’U~ are only slightly dependent on the value of,. However, if all the constants 
are kept fixed except ~‘1~ and czcr the results for l’ and 11 are very sensitive with 
respect to the variation of either crt or ~2~. Since ~2~ is the only constant that can 
be determined by experiments (Rodi, 1984), we use the widely accepted value 
~2~ = 1.92 and vary crc in such a way that the resulting simulation profiles for 
n and 11 agree well with the measurements. The value of ctt thus determined is 
0.94. 

Then, Pope’s formulation was used to calculate the Reynolds stresses. In flat 
terrain, the expression for u UJ reduces to 

(32) 

with G given by Equation (18). Comparing with the standard E--E model, which 
gives 

E2dp 
EiE = -c@---, 

t dz (33) 
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over flat terrain, the coefficient G in Equation (32) should play more or less the 
same role as cV in Equation (33). Therefore, the value of G’ given by Equation (18) 
(which is not a constant) is required to be in the vicinity of 0.0256 for this study. 
We find that to fulfil this requirement, constant bt should equal 0.233 instead of 
8/15 given by Pope in (14). Thus, all the constants in the turbulence model are 
specified. 

The vertical profiles obtained from the simulations of the mean velocity ri, the 
shear stress ILU’, and the turbulence intensities (T, and (T, over a flat floor, by using 
Pope’s formulation, are given in Figure 1. In this paper, we present all the figures 
in a dimensionless form: the mean velocities v and m and the turbulent intensities 
(T,, and (T,,, are normalized by the upstream friction velocity u, given in Equation 
(27); the shear stress U by ui and the height by the roughness length ~0 also 
given in Equation (27). Figure 1 shows good agreement between the simulation 
results and measurements except for some differences observed near the surface. 
Most remarkable are the results for (T, and (T,,,. For comparison purposes, in 
Figures lc and Id we also plot the results given by the eddy viscosity assumption, 
(T,, = (T,, = dm with E g’ iven by the simulation results. It is clear that Pope’s 
formulation successfully predicts the difference between the normal stresses, and 
is therefore superior to models based on the eddy-viscosity assumption (1). 

5. Simulations of Turbulent Flow over Hills 

The vertical profiles of the horizontal wind component V(Z), the vertical wind 
component II’(:), the turbulence intensities a,( Z) and CT,,.(Z), and the Reynolds 
shear stress U( 2) computed for Hills 8, 5 and 3 using Pope’s formulation are 
compared with all available experimental profiles at 16 longitudinal locations. 

As mentioned in the Introduction, the flow over hills can be divided into inner 
and outer layers. The justification of this division is the essentially different dynam- 
ical processes that dominate in each region. In brief, there are two fundamental time 
scales: the first one is the “time of flight” ‘T,,, which is the travel time for an eddy 
starting upstream to be advected along a streamline; the second is the turbulent time 
scale 7;, which is the time taken for an eddy to decay or turnover. The changes in 
the structure of turbulence over a hill depend on the relative magnitude of these two 
scales. In the outer region, defined by ?‘,, < Tt, the upstream boundary-layer turbu- 
lence is subject to rapid distortion. In the rapid distortion theory, it is assumed that 
the turbulence eddies are distorted by the mean flow so rapidly that the turbulence 
is not significantly modified by the change of strain rate (i.e., by the production 
term). Consequently, in the outer region, the change in turbulence depends on the 
history of the mean flow and not on the local velocity gradient. In a thin inner layer 
adjacent to the surface, defined by T, > T,, eddies encounter little change in the 
strain through their life time, so that the turbulence can reach an equilibrium with 
the perturbed mean flow. In this region, the turbulent production and dissipation 
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Fig. la-b. The vertical profiles of (a) the horizontal mean velocity F ( z ) ,  (b) the Reynolds shear 
stress G(i), (c) the longitudinal turbulence intensity a,(z) ,  and (d) the vertical turbulence intensity 
a,, ( z )  over flat terrain. The solid line is from the experimental data; the plus signs are the simulation 
results with Pope's model; the diamondsare the results from the eddy-viscosity approximation, where 
a , (=)  = u , , ( z )  = 2E(z ) /3  with E ( z )  given by simulations. 
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dominate, and the condition for a local equilibrium is satisfied. In the intermediate 
region, where T, N Tt, it is clear that the changes in the turbulence are diverse, 
i.e., the production, diffusion, advection, dissipation and the nonlinear process of 
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Fig. 2. The vertical profiles of the horizontal mean velocity F(Z) at the top of Hill 8. The solid line 
is from the experimental data for Hill 8; the dashed line is from the experimental data for flat terrain; 
the squares are the simulation results with Pope’s model; the plus signs are the simulation results - with the Pope-u w model. 

pressure correlation are all of comparable importance. Therefore, the turbulence 
changes cannot be described by either rapid distortion or local equilibrium. 

Based on this analysis, the height of the inner layer I’ is defined as the height 
above the hill at which the turbulence time scale Tt( N E/t) is roughly equal to 
the time of flight T,( N J/F), where L is the distance from the crest of the hill 
to the half-height position of the hill. Jackson and Hunt (1975) gave the following 
expression to determine C 

In presenting the results for flow over a hill, we labeled the inner layer height P in 
ail the graphs. - 

The simulation results for the mean velocity profiles F(z) and I;l’( z) all agree 
well with the wind-tunnel data and are insensitive to the particular closure scheme 
chosen. Since these results are similar to those presented in our previous study 
(Ying et al., 1994), here we only present the profile of P at the top of Hill 8 in 
Figure 2. 

When presenting the simulation results for the Reynolds stresses, we need to 
point out that all the measurements over hills were made with hot-wire anemometers 
(HWA) (Khurshudyan et al., 198 1). According to a report on another wind-tunnel 
experiment RUSVIL (Snyder et al., 1991), the HWA is a convenient instrument to 
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use where the turbulence intensities are relatively low and the flow is not reversing. 
Since in the lee of Hill 5 and Hill 3, the flows are highly turbulent and reversing, 
the measured data are likely to be erroneous. In this paper, to avoid the confusion 
caused by the doubtful measurements and to concentrate on analyzing the model 
results, we present only the results of Reynolds stresses for Hill 8. 

In Figure 3, the vertical profiles of the longitudinal turbulence intensity o,, at 
three representative longitudinal locations (upstream, at hill top and downstream) 
obtained from the simulations with Hill 8 by using Pope’s formulation are compared 
with the corresponding measurements. Overall, the simulation results agree well 
with the measurements except in the inner layer where the predicted g,, is somewhat 
smaller than the measured one. 

In Figure 4, the modeled vertical profiles of the vertical turbulence intensity our 
at three representative longitudinal locations are compared with the corresponding 
measurements. The simulation results for (T,,, are acceptable. The disagreement 
between the simulation results and the measurements mainly occurs in the inner 
layer (a feature that is exaggerated by the logarithmic height scale), where the 
simulation results don’t quite follow the experimental trend of decreasing (T,,. We 
notice that this experimental trend appears consistently throughout all the mea- 
surements including those over the flat floor. There are hardly any other complete 
wind-tunnel measurements of (T,,, that we can use to make quantitative comparison 
with the RUSH& data, though some qualitative comparison is possible. For exam- 
ple, we can refer to the wind-tunnel study by Finnigan et al. (1990), in which the 
vertical profiles of the measured ll,* are given at different longitudinal locations 
for flow over a hill with an aspect ratio of 6. Similar trends of decreasing u12 in 
the inner layer are shown at all locations. At any rate, the RUSHIL measurements 
seem to show a general trend of <02 near the ground, so the description of (T,,. by 
Pope’s formulation needs further improvement in the inner layer. 

We believe that the disagreement between the simulation results and the mea- 
surements in the inner layer is mainly attributed to the neglect of the wall-correction 
term in the Reynolds stress equations. It is known that in formulating Launder et 
al.‘s expression for the pressure correlation, a surface integral term, which corre- 
sponds to the pressure reflection from the wall, was neglected. Although this term 
does not contribute in a free shear flow, it does have a significant effect in the near- 
wall region. To take into account this wall-reflection effect, several researchers 
proposed near-wall correction terms to be added to the pressure correlation in the 
presence of a wall. However, adding any wall-correction term to the ARSM will 
inevitably destroy the linearity of the equation, thus rendering the derivation of an 
explicit expression for the Reynolds stress impossible. Therefore, we are forced to 
exclude the wall-correction term. A summary of experimental data (Launder et al., - 
1975) shows that near a wall o2 is appreciably larger and tl:* is much smaller than in 
the homogeneous free shear flow. The magnitude of 1111’ is also appreciably small- 
er in the near-wall region. Consequently, the wall effect increases the anisotropy 
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Fig. 3a-b. The vertical profiles of the longitudinal turbulence intensity u,(t) over Hill 8 at 
three longitudinal locations: (a) r = --n j2. (b) I = 0, (c) r = 3n/4. The solid line is from 
the experimental data for Hill 8; the dashed line is from the experimental data for flat terrain; the 
squares are the simulation results with Pope’s model; the plus signs are the simulation results with 
the Pope-csua model. 
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of the normal stresses but tends to diminish the shear stress. The addition of the 
wall-correction term would bring about exactly this effect. 

From Figures 1, 3 and 4, in both flat floor and Hill 8 cases, our simulated results - 
for 7 in the inner layer are smaller than the measured data, and the results for V* 
are considerably larger than the measured data. If a wall-correction were added to - 
the equation, it would generally increase 112 and decrease u!* in the inner layer. 
Moreover, by adjusting the constants contained in the wall-correction term, it is 
possible to match the experimental values quite closely. 

As for future improvement, we think there is a need to invent a feasible way to 
include the near-wall effect in the Reynolds stress equation. Since some researchers 
(Prud’homme, 1984; Newley, 1985) pointed out that the proposed near-wall cor- 
rections were not successful, to achieve this goal other means have been used. 
Launder and Li (1994) recognized that the explicit modeling of the “wall reflec- 
tion” process endemically brings in undesirable parameters such as the distance 
from the wall. They proposed, therefore, a general cubic formulation for the pres- 
sure correlation not containing such parameters, which was well tested in many 
flows near walls. However, due to the non-linear nature of their formulation, it can 
not be incorporated into the derivation of an explicit Reynolds stress equation. 

We also used Pope’s formulation to calculate the shear stress iii~. Figure 5 shows 
the vertical profiles of U( Z) at three longitudinal locations of Hill 8. It is obvious 
that at the hill top, the predicted values of --11~, are too small compared with the 
measurements. This disagreement may be contributed to an inadequate modeling 
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Fig. 4a-b. The same as Figure 3 but for the vertical turbulence intensity a,.( 2 ), 

of the turbulence transport terms in the ~11’ equation, which involves the major 
approximation made in the Pope’s model. Since, as analyzed before, in the outer 
layer the advection of upstream turbulence has a dominant effect on the turbulence 
characteristics, an adequate modeling of the turbulence transport term plays a vital 
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role in the whole formulation. As far as the upstream profile of 1111’ is concerned, 
the modelled results seem to agree well with the measurements except in the inner 
layer. For the downstream profile of llu’, we obtained results quite similar to those 
in our previous study (Ying et al., 1994) and the detailed discussion there will 
not be repeated here. In brief, the disagreement between the modelled results and 
measurements is most likely due to the measurement errors caused by an improper 
instrument (HWA) used to measure the high intensity turbulence in the lee. 

We recall that the major approximation made in the derivation of the algebraic 
- equation for the Reynolds stress u, u,; is assuming that the transport of 11; (I,) is 

proportional to that of the turbulent energy E with proportionality factor being 
the ratio u;uj/E. The validity of this approximation obviously depends on how 
closely the individual Reynolds stress component behaves like the turbulent energy -- - 
E. Since half of the sum of the three normal stresses rl*, &* and C2 equals the 
turbulent energy E, as long as these three components themselves behave in a 
similar manner, the above-mentioned approximation should be valid for all the 
normal stresses. An inspection of the RUSHIL experimental data of (T, and (T,,, at 
16 different longitudinal locations upstream of, over and downstream of the hill 
shows that in the outer layer there is no perceivable redistribution among the three 
components. The two components 2 and 2, which together account for more than 
70% of the total sum, behave very much the same. These facts seem to support the 
validity of the approximation. As shown in Figures 3 and 4, the model results for 
gu and (T,,, in the outer layer indeed agree well with the experimental data. 
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Fig. 5a-b. The same as Figure 3 but for the Reynolds shear stress U( 2). 

As for the shear stress u21), the assumption that it is advected and diffused in a 
similar manner to the turbulent energy E lacks a sound physical basis since there 
is no direct connection between these two quantities. In fact, by analyzing the 
transport equations for iiE and E in the streamline coordinate system, both Zeman 
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and Jensen (1985) and Kaimal and Finnigan (1994) pointed out that in the case of 
flow over hills E is most sensitive to the flow acceleration and (Lu! is dominated by 
the curvature of the streamline. These two distinct types of mechanism result in dif- 
ferent behaviour between iZ and E, which inevitably makes the above-mentioned 
approximation invalid. These arguments suggest that a transport equation is needed 
to describe the shear stress E in hilly terrain. 

In the second turbulence model, the Pope-m model, we solve a transport 
equation for UW, Ec@ion (25), while still using Pope’s formulation to calculate 
the normal stresses Us, -7 - l: and 11~~. Figures 3 and 4 show that the results for the 
turbulence intensities (T,, and (T,,, change very little from those calculated in the 
first model. On the other hand, Figure 5b shows a dramatically improved result for 
uw at the hill top from the new closure scheme, which indicates that a transport 
equation for 111~’ can indeed adequately model the advection effect. Nevertheless, 
the simulations are more successful in the outer layer than in the inner layer. The 
analysis of the inner-layer results in our previous study of the 11 transport equation 
(Ying et al., 1994) also holds true here. 

In Figures 6, 7 and 8, the streamwise profiles of (T,,, CT,~. and il are presented 
along three constant 11 lines in the terrain-following coordinate system, which are 
located in the inner, middle and outer layers, respectively. The reason why we 
choose the profiles along lines with constant 11 values instead of constant z values 
is that these lines are good approximations to the streamlines and it is much easier to 
discuss the behaviour of the Reynolds stresses over a hill along the streamlines. 
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Fig. 6a-b. The streamwise profiles of the longitudinal turbulence intensity a,(s) over Hill 8 along 
three lines with constant n values: (a) q = 0.005, (b) n = 0.04, (c) rr = 0.34. The solid line is the 
simulation results with the Pope-E5 model; the long-dashed line is the simulation results with Pope’s 
model; the dashed line is from the experimental data. 

Figures 6a and 7a show the streamwise profiles of oU and oCI, along a fixed 
n = 0.005 line, which originates from the upstream height z = 0.005m; and 
Figure 8a shows the profile of u’w along the 17 = 0 line, which coincides with the 
surface, These profiles are all located at the bottom of the inner layer, where local 
equilibrium prevails. The simulation results of all the three quantities from both 
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models clearly demonstrate that at the bottom of the inner layer, the changes of the 
Reynolds stresses over a hill reflect the changes in the near-surface mean shear that 
are directly related to the upstream deceleration close to the surface, the speedup 
at the hill top and the deceleration in the lee. This behaviour can qualitatively be 
explained by the local equilibrium theory. When comparing the modelled results 
with the wind-tunnel measurements, we find substantial differences between them. 
Moreover, the measured data do not reflect the changes in the flow speed well, 
especially in the case of guj and IIV. It is known that the roughness elements used 
in the RUSHIL experiment were river-washed gravels with diameters of about 0.0 1 
m (Khurshudyan et al., 1982). Under this condition, measurements at a height of 
0.005 m or less are almost impossible and the results are hardly reliable. In our 
opinion, for the most part one should probably disregard the experimental data in 
this case. 

Figures 6b and 7b show the streamwise profiles of (T,, and (T,,, along a fixed 
11 = 0.04 line, which originates from the upstream height z = 0.0417~ and is 
located in the middle layer. In the modelled results for (T,, , we observe a small rise 
in the upstream region, a decrease toward the hill top and a large increase in the 
lee. The modelled result of (T,,. shows an increase at the upstream side of the hill, 
where the streamline curvature is concave, then a decrease over the hill top, where 
the curvature is convex, and finally an increase again in the lee. 

Figures 6c and 7c show the streamwise profiles of gu and ptI, along a fixed 
q = 0.34 line, which originates from the upstream height z = 0.34m and is 
located in the outer layer. Here, we observe that (T,, and gII, behave in a similar 



92 R. YING AND V. M. CANUTO 

o-. * I I ‘ I.. * t 1.. .I. *. .I 
-1.0 -0.5 0.0 0.5 1.0 

da 

04 

3.O.“““““““““‘I 

2.5 - 

___----- _________------_ 
w-r ---______------___c 

1.0 - 

0.5-....I....I....1....: 
-1.0 -0.5 0.0 0.5 1.0 

x/a 

Fig. 7a-b. The same as Figure 6 but for the vertical turbulence intensity (T,,.( s ). 

manner as in the middle layer, with the difference that their variations over the hill 
are not so dramatic as in the middle layer. 

In order to compare the simulation results of otc and 0, in the middle and 
outer layers with existing theory, we need to turn to the transport equations for 
the Reynolds stresses written in a streamline coordinate system. Let X’ and 2’ be - 
the coordinates parallel and perpendicular to the flow direction, respectively, IT’ be 
the mean velocity, u’* and w’* be the normal stresses in the .I” and 2’ directions, 
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respectively, and U’UJ be the shear stress. According to Kaimal and Finnigan 
(1994), these equations are 

+ (other terms). (35) 

--i)r;’ 
+ 2113 12z t (other terms). (36) 

Fi)u’Irr’ 1 =-2p(g) +2(g) -pg+(other terms), 
c3.r 

(37) 

where R is the radius of the streamline curvature, and (other terms) includes the dif- 
fusion, pressure-correlation and dissipation terms. It is evident that the advantage 
of writing the Reynolds stress equations in streamline coordinates is that the turbu- 
lence production is decoupled into individual terms, each of which can be identified 
with a certain physical effect, such as the streamwise flow acceleration (31r’/dx’), 

-7 the shear (drj /a:‘) and the streamline curvature (1 /R). Equations (35)-(37) show 
that U’~ is most sensitive to the streamwise acceleration, u,‘2 responds to both the 
streamline curvature and acceleration with more weight of the curvature, and U’W 
is dominated by the curvature. - 

Even though the (T,, gu, and W in our calculations are not identical to (u’~ ) ‘j2, 
( UI’~ )‘I2 and U’W’ in the Hill 8 case, the differences should be small at distances well -- 
away from the surface. Thus, qualitatively, the conclusions drawn for 1P2, w’~ and 
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The streamwise profiles of the Reynolds shear stress UW(X) over Hill 8 along three lines 
with constant 7 values: (a) 71 = 0, (b) ~7 = 0.033, (c) q = 0.32. The solid line is the simulation 
results with the Pope-E model; the long-dashed line is the simulation results with Pope’s model; 
the dashed line is from the experimental data. 

u’ W’ should also apply to gU, gU, and ‘WI. The variation of the modelled oU can very 
well be explained by the upstream flow deceleration, the flow acceleration toward 
the hill top and the flow deceleration in the lee. Moreover, it is obvious that these 
changes in the flow velocity are less pronounced farther away from the surface, 
which explains the difference between the modelled results in the outer and middle 
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layers. On the other hand, the behaviour of the modelled CJ?*) can be explained by 
both the curvature and acceleration effects, especially by the curvature. 

From Figures 6a, 7a, 6b and 7b, we also observe that the modelled results of 
(T,, and CT,~, in the middle and outer layers are generally close to the wind-tunnel 
measurements, especially in the outer layer. Nevertheless, the measured data appear 
to show smaller variations than the modelled results. 

Figure 8b shows the modelled results of U in the middle layer along a fixed 
‘7 = 0.033 line, which originates from the upstream height 2 = 0.033717. Figure 8c 
shows the results of iii0 in the outer layer along the 71 = 0.32 line (z = 0.32~)). 
We find the results of ?I in the middle layer from both models somewhat similar 
to those of IT, in the middle layer; whereas in the outer layer, the result of u II’ from 
Pope’s model is similar to that of (T,,. in the outer layer and the result from the 
Pope-u (13 model shows almost a constant value for II 11’. These results don’t agree 
with the prediction given by Equation (37) that II should be most sensitive to the 
streamline curvature. We have already indicated the problem with Pope’s model 
when used to predict u III over a hill. Now, it seems that although the Pope- II II’ model 
can describe the behavior of urn at the hill top reasonably well, it needs further 
improvement to correctly predict the changes of 11 as flow moves over the hill. As 
shown in Equation (25), the transport equation for U~U~ used in this study is indeed 
over-simplified, especially in the production term. Therefore, the improvement 
should be directed to including more physics in the transport equation, probably 
by using the complete form given by Equation (5). Actually, we are currently 
undertaking the task of implementing Equation (5) in a simulation routine. 
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6. Conclusions 

We have performed numerical simulations of turbulent flow over two-dimensional 
hills with different slope using a finite-difference method in a non-hydrostatic 
atmospheric model. Computations of the mean flows and turbulence with two 
different turbulence closure schemes have been compared with measurements 
from the EPA wind-tunnel experiment RUSHIL. In a first model, Pope’s explicit 
ARSM is used to calculate all the components in the Reynolds stress tensor; in a 
second model, Pope’s formulation is combined with a transport equation for UZL). 
Our findings can be summarized as follows: 

1. Previous studies on flow over complex terrain (Taylor et al., 1987; Beljaars 
et al., 1987; Ayotte et al., 1994) concluded that the simulated results of the mean 
velocities are insensitive to the turbulence models used. In our study, the simulated 
mean flow results employing two different turbulence closure models all agree well 
with the measurements, which confirms the general assessment. 

2. The simulation results for the turbulence intensities gtr and alu obtained from 
the two turbulence models are only slightly different. The results for (T, agree 
well with the measurements and the results for Us,, are acceptable but need to 
be improved in the inner layer. Also, the simulation results demonstrate that the 
changes of gu and uur as flow moves over a hill are qualitatively in agreement with 
those expected from existing theory. 

3. Pope’s formulation fails to predict the shear stress U at hill tops. In order 
to adequately describe .u?L) in hilly terrain, it is necessary to introduce a transport 
equation for 11.111 in the second turbulence model. This finding coincides with the 
conclusions reached by a number of researchers previously (Zeman and Jensen, 
1987; Beljaars et al., 1987; Ayotte et al., 1994). The physical reason for it has been 
repeatedly mentioned by these authors, that is, in the outer region, advection of 
upstream turbulence dominates and only a transport equation for uu’ can realis- 
tically model the advection effect. Although the simplified form of the transport 
equation used in this study is successful in predicting the behavior of PL at the hill 
top, it needs further improvement to correctly describe the changes of 1~~1 as flow 
passes over a hill. 
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Appendix: Solution of the Cubic Equation for G’ 

Equation (18) can be written in the general form of a cubic equation 
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in terms of which, the real root is 

a=(A+B)-;. (AlO) 

From the above solutions of the cubic equation, it is evident that in the case of 
R2 - Q3 > 0, the only real root of the equation provides a unique solution to the 
physical problem. However, it is not so simple in the case of R2 - Q3 5 0, where 
the physical solution must be chosen from the three real roots of the problem. 
Assuming R < 0, as R2 - Q3 -+ O-, the unique real root z given by (AIO) 
approaches the limit -2R'l' - a/3; on the other hand, as R2 - Q3 -j O+, only 
root x 1 in (A7) approaches the same limit. It is obvious that when ( R2 -Q3) changes 
sign from positive to negative, 2 1 is the only continuous solution corresponding to 
r. Therefore, in the case of R2 - Q3 5 0 and R < 0, we should choose z1 as the 
physical solution. Actually, this is the only case that we need to discuss because 
from (A.5) it can be easily proven that with n, b and c given by (A2), (A3) and (A4), 
R is always negative. 
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